Вычеркните в числе три цифры
Формулировка задачи: Вычеркните в числе N три цифры так, чтобы получившееся число делилось на K. В ответе укажите ровно одно получившееся число.
Задача входит в состав ЕГЭ по математике базового уровня для 11 класса под номером 19 (Задачи на цифровую запись числа).
Для решения таких задач нужно знать основные признаки делимости чисел, а также уметь раскладывать составной делитель на взаимно простые множители.
Рассмотрим, как решаются подобные задачи на примерах.
Вычеркните в числе 85417627 три цифры так, чтобы получившееся число делилось на 18. В ответе укажите ровно одно получившееся число.
Чтобы заданное число 85417627 делилось на 18, нужно чтобы оно делилось на 2 и на 9. Чтобы число делилось на 2, оно должно быть четным. Чтобы число делилось на 9, сумма его цифр должна делиться на 9.
Число 85417627 четным не является. Чтобы оно стало четным, из него нужно вычеркнуть последнюю цифру 7. Осталось вычеркнуть 2 цифры.
После этого получилось число 8541762. Найдем сумму его цифр:
8 + 5 + 4 + 1 + 7 + 6 + 2 = 33
Чтобы число делилось на 9, сумма его цифр должна составлять 27 или 18 или 9.
Число 27 отличается от 33 на 6 — это 4 + 2 или 5 + 1. Если вычеркнуть цифры 4 и 2, новое число 85176 останется четным и сумма его цифр равна 27, поэтому оно делится нацело на 18. Если вычеркнуть цифры 5 и 1, новое число 84762 останется четным и сумма его цифр равна 27, поэтому оно также делится нацело на 18. В качестве ответа можно выписать любое из них.
Число 18 отличается от 33 на 15 — это 8 + 7. Если вычеркнуть цифры 8 и 7, новое число 54162 останется четным и сумма его цифр равна 18, поэтому оно делится нацело на 18. И это число также подойдет в качестве ответа.
Сумму цифр числа, равную 9, получить вычеркиванием двух цифр не получится.
85176 или 84762 или 54162
Вычеркните в числе 141565041 три цифры так, чтобы получившееся число делилось на 30. В ответе укажите ровно одно получившееся число.
Чтобы число 141565041 делилось на 30, нужно чтобы оно делилось на 3 и 10. Чтобы число делилось на 3, нужно чтобы сумма цифр числа делилась на 3. Чтобы число делилось на 10, нужно, чтобы оно заканчивалось на 0.
Число 141565041 на 0 не заканчивается. Поэтому нужно вычеркнуть 2 последние цифры. Новое число равно 1415650.
Осталось вычеркнуть одну цифру. Чтобы это сделать, найдем сумму цифр числа 1415650:
1 + 4 + 1 + 5 + 6 + 5 + 0 = 22
Чтобы число делилось на 3, сумма его цифр должна быть равна 21 или 18. Сумму 15 или меньше получить вычеркиванием одной цифры не получится.
21 отличается от 22 на единицу. Можно вычеркнуть любую единицу числа 1415650, при этом новое число 415650 или 145650 будет заканчиваться на 0 и делиться на 3, то есть любое из этих чисел делится на 30.
18 отличается от 22 на 4. Если вычеркнуть 4, новое число 115650 продолжит заканчиваться на 0 и будет делиться на 3. Поэтому оно также делится на 30.
415650 или 145650 или 115650Вычеркните в числе 181615121 три цифры так, чтобы получившееся число делилось на 12. В ответе укажите какое-нибудь одно такое число.
Чтобы число 181615121 делилось на 12, нужно чтобы оно делилось на 3 и 4. Чтобы число делилось на 3, нужно чтобы сумма цифр числа делилась на 3. Чтобы число делилось на 4, нужно, чтобы число, составленное из 2 последних цифр, делилось на 4.
Число 21 на 4 не делится. Поэтому нужно вычеркнуть последнюю цифру. Новое число равно 18161512. Число 12 делится на 4.
Осталось вычеркнуть две цифры. Чтобы это сделать, найдем сумму цифр числа 18161512:
1 + 8 + 1 + 6 + 1 + 5 + 1 + 2 = 25
Чтобы число делилось на 3, сумма его цифр должна быть равна 21 или 18 или 15 или 12 (для нахождения минимальной суммы берем 2 самые большие цифры и вычеркиваем их, находим сумму остальных 6 + 8 = 14, 25 - 14 = 11). Сумму 9 или меньше получить вычеркиванием двух цифр не получится. Сумму 24 получить вычеркиванием 2 цифр не получится.
21 отличается от 25 на 4. В числе нет 2 цифр, которые в сумме составят 4.
18 отличается от 25 на 7. Это 1 + 6 или 5 + 2. Если вычеркнуть 2 и 5, получится число 181611, однако оно не делится на 4, так как 11 на 4 не делится. Если вычеркнуть первую единицу и 6, то получится число 811512, которое делится на 4, так как 12 делится на 4, и делится на 3. Точно также можно вычеркнуть вторую или третью единицу и 6, результирующее число 181512 будет делиться на 3 и на 4. Если вычеркнуть последнюю единицу и 6, получится число 181152, которое делится на 4, так как 52 делится на 4, и делится на 3.
15 отличается от 25 на 10. В числе нет 2 цифр, которые в сумме составят 10.
12 отличается от 25 на 13. Это 8 + 5. Если вычеркнуть эти цифры, получится число 116112, оно заканчивается на 12, поэтому делится на 4, и оно делится на 3. Это число также может быть ответом.
811512 или 181512 или 181152 или 116112Вычеркните в числе 59678406 три цифры так, чтобы получившееся число делилось на 60. В ответе укажите ровно одно получившееся число.
Чтобы число 59678406 делилось на 60, нужно чтобы оно делилось на 3, 4 и 5. Чтобы число делилось на 3, нужно чтобы сумма цифр числа делилась на 3. Чтобы число делилось на 4, нужно чтобы число, составленное из 2 последних цифр делилось на 4 или заканчивалось на 00. Чтобы число делилось на 5, нужно, чтобы оно заканчивалось на 0 или 5, однако если число будет заканчиваться на 5, то оно не разделится на 4. Значит наше число заканчивается на 0.
Число 59678406 на 0 не заканчивается. Поэтому нужно вычеркнуть 1 последнюю цифру. Новое число равно 5967840.
Осталось вычеркнуть еще 2 цифры. Нужно подобрать такой набор из цифр, чтобы он делился на 3. Чтобы это сделать, найдем сумму цифр числа 5967840:
5 + 9 + 6 + 7 + 8 + 4 + 0 = 39
Чтобы число делилось на 3, сумма его цифр должна быть равна 36, 33, 30, 27 или 24. Сумму 21 и меньше получить вычеркиванием двух цифр не получится (39 – 21 = 18 = 9 + 9, а в числе нет двух девяток).
36 отличается от 39 на 3. Однако в числе нет двух цифр, которые бы в сумме составили 3. 33 отличается от 39 на 6 (0 + 6). Однако из числа нельзя вычеркнуть 0, так как оно перестанет делиться на 5.
30 отличается от 39 на 9. Если вычеркнуть 5 и 4, новое число 96780 продолжит заканчиваться на 0 и будет делиться на 3. Также это число делится на 4, так как 80 делится на 4 нацело. Поэтому число 96780 делится на 60.
27 отличается от 39 на 12. Если вычеркнуть 5 и 7, новое число 96840 продолжит заканчиваться на 0 и будет делиться на 3. Также это число делится на 4, так как 40 делится на 4 нацело. Поэтому число 96840 делится на 60. Если вычеркнуть 8 и 4, новое число 59670 продолжит заканчиваться на 0 и будет делиться на 3. Но это число не делится на 4, так как 70 делится на 4 нацело.
24 отличается от 39 на 15. Если вычеркнуть 9 и 6, новое число 57840 продолжит заканчиваться на 0 и будет делиться на 3. Также это число делится на 4, так как 40 делится на 4 нацело. Поэтому число 57840 делится на 60. Если вычеркнуть 8 и 7, новое число 59640 продолжит заканчиваться на 0 и будет делиться на 3. Также это число делится на 4, так как 40 делится на 4 нацело. Поэтому число 59640 делится на 60.
96780 или 96840 или 57840 или 59640
Вычеркните в числе 123456 три цифры так, чтобы получившееся трёхзначное число делилось на 27. В ответе укажите получившееся число.
Число 27 разложить на взаимно простые множители не получится, так как оно равно:
27 = 3 ⋅ 3 ⋅ 3 = 3 ⋅ 9
Поэтому будем проверять, делится ли число на 9 (наибольший множитель числа 27, для которого мы знаем признаки делимости), а в случае если оно делится, будем делить это число на 27 для проверки. Чтобы число 123456 делилось на 9, нужно чтобы сумма цифр этого числа делилась на 9.
Найдем сумму цифр числа 123456:
1 + 2 + 3 + 4 + 5 + 6 = 21
Чтобы число делилось на 9, сумма его цифр должна быть равна 18 или 9.
18 отличается от 21 на 3. Однако в числе не найдется 3 цифры, сумма которых будет равна 3.
9 отличается от 21 на 12. Это может быть 1 + 5 + 6 или 2 + 4 + 6 или 3 + 4 + 5. Если вычеркнуть из числа цифры 1, 5 и 6, то получится число 234. Если вычеркнуть из числа цифры 2, 4 и 6, то получится число 135. Если вычеркнуть из числа цифры 3, 4 и 5, то получится число 126.
Проверим, делятся ли числа 234, 135 и 126 на 27:
234 / 27 = 8,666...
135 / 27 = 5
126 / 27 = 4,666...
Только число 135 делится нацело на 27.
135
Нашли ошибку? Выделите текст и нажмите Ctrl + Enter.
Есть другой способ решения?