ГлавнаяМатематикаТеорияНаименьшее общее кратное

Наименьшее общее кратное

2016-02-02 21:39:26

Наименьшее общее кратное чисел – это наименьшее число, которое делится на все заданные числа.

Алгоритм поиска НОК

Вычисление НОК похоже на поиск НОД. Чтобы найти наименьшее общее кратное, нужно использовать следующий алгоритм:

  1. Разложить все числа на простые множители, используя признаки делимости чисел.
  2. Найти совпадающие множители во всех числах и выписать их.
  3. Выписать все несовпадающие множители.
  4. Перемножить все выписанные множители.

Если среди множителей чисел не были найдены одинаковые, НОК числа находится перемножением этих чисел.

Примеры поиска наименьшего общего кратного

Рассмотрим, как найти НОК с помощью алгоритма на нескольких примерах.

Пример 1:

Найдите наименьшее общее кратное чисел 420 и 990.

Решение:

Разложим оба числа на простые множители:

Получили, что:

420 = 2 ⋅ 2 ⋅ 3 ⋅ 5 ⋅ 7

990 = 2 ⋅ 3 ⋅ 3 ⋅ 5 ⋅ 11

Выпишем все совпадающие множители:

2, 3, 5

Выпишем все несовпадающие множители:

2, 7 – из первого числа

3, 11 – из второго числа

Перемножим полученные множители:

2 ⋅ 3 ⋅ 5 ⋅ 2 ⋅ 7 ⋅ 3 ⋅ 11 = 13860

Ответ: 13860

Пример 2

Найдите наименьшее общее кратное чисел 96 и 378.

Решение:

Разложим оба числа на простые множители:

Получили, что:

96 = 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 3

378 = 2 ⋅ 3 ⋅ 3 ⋅ 3 ⋅ 7

Выпишем все совпадающие множители:

2, 3

Выпишем все несовпадающие множители:

2, 2, 2, 2 – из первого числа

3, 3, 7 – из второго числа

Перемножим полученные множители:

НОК = 2 ⋅ 3 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 3 ⋅ 3 ⋅ 7 = 6048

Ответ: 6048

Пример 3:

Найдите наименьшее общее кратное чисел 330 и 343.

Решение:

Разложим оба числа на простые множители:

Получили, что:

330 = 2 ⋅ 3 ⋅ 5 ⋅ 11

343 = 7 ⋅ 7 ⋅ 7

Совпадающих множителей у этих 2 чисел нет, поэтому для получения НОК будет достаточно перемножить исходные числа:

НОК = 330 ⋅ 343 = 113190

Ответ: 113190

Наверх