ГлавнаяМатематикаКак решатьПлощадь четырёхугольника можно вычислить по формуле S = d1 ⋅ d2 ⋅ sinα / 2

Площадь четырёхугольника можно вычислить по формуле S = d1 ⋅ d2 ⋅ sinα / 2

2017-02-25 18:33:33

Формулировка задачи: Площадь четырёхугольника можно вычислить по формуле S = d1 ⋅ d2 ⋅ sinα / 2, где d1 и d2 — длины диагоналей четырёхугольника, α — угол между диагоналями. Пользуясь этой формулой, найдите длину диагонали d2, если даны d1, sinα и S.

Задача входит в состав ЕГЭ по математике базового уровня для 11 класса под номером 4 (Преобразование выражений).

Рассмотрим, как решаются подобные задачи на примере и выведем общий способ решения.

Пример задачи:

Площадь четырёхугольника можно вычислить по формуле S = d1 ⋅ d2 ⋅ sinα / 2, где d1 и d2 — длины диагоналей четырёхугольника, α — угол между диагоналями. Пользуясь этой формулой, найдите длину диагонали d2, если d1 = 6, sinα = 1/3, а S = 19.

Решение:

Выразим d2 из формулы:

d1 ⋅ d2 ⋅ sinα = 2S

d2 = 2S / (d1 ⋅ sinα)

Подставим известные данные в формулу и получим результат:

d2 = 2 ⋅ 19 / (6 ⋅ 1/3) = 38/2 = 19

Ответ: 19

В общем виде решение данной задачи выглядит следующим образом:

d2 = 2S / (d1 ⋅ sinα)

Осталось лишь подставить конкретные значения и получить ответ.

До экзаменов еще есть время!

Наверх