Найдите значение числового логарифмического выражения
Формулировка задачи: Найдите значение числового логарифмического выражения.
Задача входит в состав ЕГЭ по математике базового уровня для 11 класса под номером 5 (Вычисления и преобразования).
Рассмотрим, как решаются подобные задачи на логарифмы на примерах.
Найдите значение выражения log0,310 – log0,33
Разность логарифмов с одинаковым основанием равна логарифму частного:
log0,310 – log0,33 = log0,3(10/3)
Возведем 10/3 в степень -1, вынесем степень из под логарифма (логарифм степени):
log0,3(10/3) = -log0,3(3/10) = -1
-1
Найдите значение выражения log713 / log4913
Преобразуем знаменатель: для этого вынесем степень основания из под логарифма:
log4913 = log(7)213 = 1/2 ⋅ log713
Тогда значение выражения равно:
log713 / log4913 = 2 ⋅ log713 / log713 = 2
2
Найдите значение выражения 9log550 / 9log52
Преобразуем выражение:
9log550 / 9log52 = 9log550 – log52
Разность логарифмов с одинаковыми основаниями равна логарифму частного:
log550 – log52 = log5(50/2) = log525 = 2
Тогда значение выражения равно:
92 = 81
81
Найдите значение выражения 6log7∛7
Вынесем корень за пределы логарифма:
6log7∛7 = 6 ⋅ 1/3 ⋅ log77 = 2
2
Найдите значение выражения log35 / log37 + log70,2
Преобразуем частное с помощью формулы перехода от логарифма в одном основании к логарифму при другом основании:
log35 / log37 = log75
Сумма логарифмов с одним основанием равна логарифму произведения:
log75 + log70,2 = log71 = 0
0
Найдите значение выражения log0,83 ⋅ log31,25
Преобразуем второй множитель и приведем его к тому же основанию:
log31,25 = log3(5/4) = -log3(4/5) = -log30,8 = -1 / log0,83
И найдем значение выражения:
log0,83 ⋅ log31,25 = -log0,83 / log0,83 = -1
-1
Найдите значение выражения 5log2549
Вынесем степень основания логарифма за его пределы:
log2549 = 1/2 ⋅ log549
Внесем ее обратно как логарифм корня:
1/2 ⋅ log549 = log5(49)1/2 = log57
И воспользуемся основным логарифмическим тождеством:
5log2549 = 5log57 = 7
7
Найдите значение выражения log4(log216)
Вычислим значение выражения в скобках:
log216 = 4
Тогда значение выражения равно:
log4(log216) = log44 = 1
1
Найдите значение выражения log42 + log0,258
Найдем значения каждой части выражения и получим результат:
log42 =1/2 ⋅ log22 = 1/2 ⋅ 1 = 0,5
log0,258 = log1/48 = 1/2 ⋅ log1/28 = 1/2 ⋅ log1/223 = 1/2 ⋅ (-3) = -1,5
Тогда значение выражения равно:
log42 + log0,258 = 0,5 – 1,5 = -1
-1
Найдите значение выражения 2log26 – 3
Разложим число на множители:
2log26 – 3 = 2log26 ⋅ 2–3
Применим основное логарифмическое тождество к первому множителю и выполним оставшиеся вычисления:
2log26 ⋅ 2-3 = 6 ⋅ 1/8 = 0,75
0,75
Найдите значение выражения 7–2log72
Вынесем множитель перед логарифмом в степень, чтобы избавиться от него:
–2log72 = log72–2 = log70,25
И применим основное логарифмическое тождество:
7–2log72 = 7log70,25 = 0,25
0,25
Найдите значение выражения (3log23)log32
Если мы возведем число сначала в степень log32, а потом уже в степень log23, то сможем применить основное логарифмическое тождество:
(3log23)log32 = (3log32)log23 = 2log23 = 3
3
Найдите значение выражения (1 – log212) ⋅ (1 – log612)
Преобразуем логарифмы:
log212 = log2(2 ⋅ 6) = log22 + log26 = 1 + log26
log612 = log6(2 ⋅ 6) = log62 + log66 = log62 + 1
Подставим полученные значения в выражение:
(1 – (1 + log26)) ⋅ (1 – (log62 + 1)) = (1 – 1 – log26) ⋅ (1 – log62 – 1) = – log26 ⋅ (– log62) = log26 ⋅ log62
Преобразуем второй множитель, чтобы логарифмы имели одинаковые основания, и выполним остальные действия:
log26 ⋅ log62 = log26 ⋅ 1/log26 = 1
1
Найдите значение выражения log318 / (2 + log32)
Преобразуем 2 в знаменателе в логарифм с основанием 3 (возведем 3 в степень 2 и получим число под логарифмом):
2 = log39
Сумма логарифмов с одним основанием в знаменателе равна логарифму произведения:
2 + log32 = log39 + log32 = log3(9 ⋅ 2) = log318
Осталось сократить числитель и знаменатель:
log318 / log318 = 1
1
Нашли ошибку? Выделите текст и нажмите Ctrl + Enter.
Есть другой способ решения?